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The typical grain boundary cracks are often formed at the grain-boundary triple junction 
as a result of blocking of grain-boundary sliding. However, a theoretical discussion has not 
fully been made on the nucleation of grain corner cracks at high temperatures where 
diffusional recovery occurs. In this study, a continuum mechanics model which 
incorporated the recovery effect by diffusion of atoms has been developed to explain the 
initiation of wedge-type cracking during high-temperature creep. A good agreement was 
found between the result of calculation based on this model and experimental results in 
austenite steels. It was considered that there is a critical creep rate for wedge-type 
cracking. The model was also applied to the prediction of the rupture life in creep. 

1. Introduction 
It is well known that there are two types of inter- 
granular creep cracks, namely, wedge-type cracks 
and round-type cavities, and that they are formed 
as a result of grain-boundary sliding [1]. The 
typical grain-boundary cracks are often nucleated 
at the grain-boundary triple junction where high 
stress concentration is caused by blocking of grain- 
boundary sliding, while round-type cavities are 
usually associated with irregularities [2] or second- 
phase particles [3] on the grain boundary. The 
diffusion of atoms at elevated temperatures as well 
as plastic accommodation results in a decrease of 
the stress concentration at the grain corner or at 
the interface of second-phase particles. Mori et al. 
[4] recently discussed the blocking of grain- 
boundary sliding by second-phase particles, using a 
continuum mechanics model which incorporated 
the recovery effect by diffusion of atoms. How- 
ever, the theoretical analysis has not been made 
on the nucleation of grain corner cracks at high 
temperatures where diffusional recovery occurs. 

In this study, a continuum mechanics model 
which is similar to that of the previous study 
[5] has been developed to explain the crack initi- 
ation at the grain-boundary triple junction during 

high-temperature creep. It is also important to 
know the crack initiation life for life prediction in 
the material in which the creep rupture occurs 
immediately after the crack initiation [6]. The 
model was applied to the prediction of rupture 
life. The result of theoretical calculation was then 
compared with that of experiment in austenite 
steels. 

2. Elastic strain energy and internal stress 
arising from blocking of grain-boundary 
sliding 

The internal stress state when grain-boundary 
sliding is blocked at the grain corner can be calcu- 
lated by Eshelby's method [7], if a grain-boundary 
is approximated to be a flat ellipsoidal inclusion 
[8]. A grain-boundary is assumed here to be a two- 
dimensional flat inclusion, Do, with length 2a~ and 
thickness 2az. 

2 2 x l /a l  + x2/a~ <= 1 (a2/al ~ 1) (1) 

As shown in Fig. la, 2al and 2 a  2 a r e  assumed to be 
equal to the grain-boundary length, 2L, and the 
magnitude of Burgers vector, b, respectively. 

We consider that plastic shear strain on the 
grain-boundary, 731 = 2e~a (= 2e*) occurs as a 
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Figure 1 Grain boundary approximated by a two-dimensional flat inclusion, D o. 
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result of  grain-boundary sliding under an external 
tensile stress, o i .  If the sliding is blocked at the 
grain corner, eigen strain - e ~ l  (= - e * )  occurs in 
the domain Do which is otherwise free sliding. 
The internal stress in the inclusion, Tin, is given 
by [9] 

7in = -- 2A pe~l = -- 2A pe* (2) 

where p and v are the rigidity and Poisson's ratio 
of  the material, respectively, and A = 1 / (1- -v) .  
The elastic strain energy arising from blocking of  
grain-boundary sliding, Eeb is 

E e l  = 2 A  *2 

where the volume of  the inclusion, V, is zrLb/2 per 
unit width of  the material. The shear strain, e~,, on 
the grain boundary can be replaced by the conju- 
gate slip of  n dislocations with the same Burgers 
vector, b, on a half o f  the grain-boundary length, L 
(Fig. lb)  (or the slip o f  a pair o f  dislocations with 
Burgers vector nb). As the total displacement of  
dislocations is nb on the grain-boundary length, 
2L, the local strain, e*, is defined by 

, nb/2 _ n 
e -  b 2 (4) 

Substituting Equation 4 into Equation 3, Eel can 
be rewritten as follows: 

Eel = 2A P 2 - 8 

(5) 

3. Internal stress and eigen strain in 
inclusion Do 

The total number of  atoms contained in extra half 
planes of  n dislocations with unit width, N, is 

10 

expressed by the grain diameter, D, and the atomic 
volume of  the material, ~2: 

nbD 2e*bD 
N . . . . .  (6) 

~2 ~2 

In the absence of  recovery, the total number o f  
atoms, No, is given by the corresponding plastic 
strain, e, and the number of  dislocations, no: 

nobD 2ebD 
No - - (7) 

~2 ~2 

Fig. 2 shows the deficit and excess of  mass 
caused as a result o f  blocking of  the grain-bound- 
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Figure 2 Deficit and excess of mass caused by blocking of 
the grain-boundary sliding. 



ary sliding. N is also the net excess of atoms which 
should be transported. Emission of atoms, dN, 
from the side of excessive mass occurs when dis- 
locations climb along the grain boundary in the 
recovery process. Those atoms are transported by 
diffusion along the grain boundary or through the 
grain to the deficit side of mass. The difference in 
chemical potential between the emission and the 
absorption sides of atoms, p*, is given by [5] 

/1' = dEe1 - dn dEe1 
dN dN dn 

~rAtmb 2 zrAp.nb~2 
- - ( 8 )  

bD 4 4D 

When the recovery is controlled by grain-boundary 
diffusion, the flux of atoms, JGB, is expressed by 
the following equation, provided that the average 
migration distance of atoms is 4L: 

DGB gradp* DaB rrAta~bf2/4D 
JGB -- ~ k T  - g2kT 4L 

rrAp~O.,DGBN 
- 16LD2kT (9) 

where DaB is the grain-boundary diffusion coef- 
ficient, k Boltzmann's constant and T the absolute 
temperature. The thickness of the cross-section of 
grain-boundary diffusion, 6, is approximately 
equal to 2b. 

Since the emission of atoms occurs from a pair 
of the extra half planes, the total migration rate of 
atoms due to grain-boundary diffusion, (dN/dt)GB, 
is given by 

7rA/./.D GB ~,N~ 
8LD2kT 

rr(3 )1/2A P.OG BUL/V~ 
4D3kT 

(10) 

where L is approximated by D/2(3) 1/2. If the climb 
of grain-boundary dislocation is controlled by 
volume diffusion, the cross-section of diffusion is 
2D per unit width and the diffusion distance is 
approximated to be D. Therefore, the diffusion 
flux, Jr, is given by 

D v D v rcApnbg2/4D 
Jv - gradp* - 

g2k T ~ k  T D 

,rA UDvaN 
4D3k T (11 ) 

where Dv is the volume diffusion coefficient. The 

migration rate, (dN/dt)v, in this case is expressed 

by ( - ~ ) , , - 2 D Y v  =TrAl'tDvgzN2D2kT (12) 

From Equations 10 and 12, 

(dN/dt)v 2DvD 
- < 1 ( 1 3 )  

(dN/dt)G B 3X/2DGB ~ 

if the grain-boundary diffusion controls the 
recovery process. For example, substituting 4.56 • 
10-19m2sec -1 [5] and 3.24 x 10-13mZsec -1 [10] 
for Dv and DGB of the steels at 973 K, respectively, 
Equation 13 is satisfied whenD is less than 3.13 x 
10 -4 m. Differentiating N and No in Equations 6 
and 7 with respect to time, t, we obtain 

dN 2bD de* 

dt ~2 dt 

dNo 2bD de 

dt ~2 dt 

(14) 

(15) 

In the recovery process controlled by grain- 
boundary diffusion, the net migration rate, dN/dt, 
is given by 

d N -  dN0 (dN)G (16) 
dt dt ~ -  B 

Substituting Equations 14 and 15 into Equation 
16, and using Equation 10, the following equation 
of primary reaction is obtained: 

de* _ de rr(3)I/2ApDGB~ e* 

dt dt 4D3k T (17) 

= ~ -- Ce* 

where ~ = de/dt and C = rr(3)I/2ApDGB~6/4D3kT. 
If the above equation is solved under the initial 
condition of e* = 0 for t = 0 when ~ is constant, 

= ~ [1 -- exp ( -C t ) l  (18) 

The internal stress, Tin, is then given by 

( ~ )  C [l Tin = - - 2 / 1  • - -exp(--Ct)]  (19) 

If the volume diffusion controls the recovery pro- 
cess, the value of C in the above equations should 
be replaced by 1rAp.Dv~2/2D2kT. 

The term of an external stress, a A, does not 
appear in the above equations, because there is no 
interaction between an external stress and the 
internal stress field as regards the elastic strain 
energy (Colonnetti's theorem) [11]. 
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Figure 3 Stress field outside the inclusion 
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4. Stress outside inclusion Do and critical 
strain rate for crack initiation 

The stress field outside the flat inclusion Do can be 
easily obtained by Mura's alternative method [12]. 
The internal stress in the domain Do, rm, can be 
calculated by Equation 19. We consider an ellip- 
soidal notch which has the same shape and size as 
the inclusion Do. This notch can be regarded as a 
crack, because the inclusion Do is an extremely flat 
ellipsoid (b ~ 2L) and p = 0 (p is the radius of 
curvature at the notch root). According to the 
result of Stroh's calculation [13], the stress distri- 
bution around a crack in a body under a uniformly 
applied stress, rout, can be also obtained without 
difficulty by putting rout = -  rm. We next con- 
sider an infinite body without any cracks under a 
uniformly applied stress, tin. The stress outside 
the flat inclusion Do can be obtained by super- 
posing Stroh's solution of a crack and a uniformly 
applied stress field, zin, as shown in Fig. 3. 

Stroh [13] also calculated the normal stress 
acting on the plane making an angle 0 with the slip 
plane. This stress is a maximum when 0 is 
70.5 ~ . The maximum value of the normal stress is 
( 2 / 3 1 / : ) ( L / r )  1 / :  Tout at the distance r from the 
grain corner. For the initiation of intergranular 
wedge-type cracking, McLean [ 14] utilized Stroh's 
equation 

[ 1 12")'# (20) 
~-out > 7r(1 - -  v)L 

where 7 is the surface energy per unit area. The 
grain-boundary sliding in two directions, as shown 
in Fig. 4, is considered in this study. The wedge-type 
cracking can occur on the grain-boundary plane 
OA. The normal stress acting on the plane OA is 
2Zou~ in this case. Therefore, from Equation 2, 

21"~ = - -  2 Z i n  - 1 - -  v p c *  

> [ 1 2 , ) , . 1 1 ' 2  _W)/l (21) 
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The critical shear strain for the crack initiation is 
given by 

( 1 - - u ) L [  12,),/1 ]1/2 = [37(1_u)L]I /2  

[;d---;)z [ ;-.3-: J 
(22) 

The interaction between two sliding boundaries is 
neglected here. The critical strain rate, ec, neces- 
sary for wedge-type cracking at the time t e is also 
given from Equation 18 by 

c[37(1 - ~)L/~ub:] 1': 
> ec = 1 -- exp(--Ctc) (23) 

The other type of intergranular cracking such as 
round-type cavity may occur below this critical 
strain rate. The effect of an external tensile stress, 
o A, on the crack initiation is negligible, because it 
is usually very small compared with the theoretical 
strength of the material (2  E/10). 
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Figure 4 Grain-boundary sliding model considered in this 

study. 



ee can be connected with the steady-state creep 
rate, es, which reflects materials properties when 
most of the rupture life is occupied by steady-state 
creep. If  the recovery also involves another process 
such as plastic relaxation in the adjacent grains, 
the critical strain rate for wedge-type cracking is 
much larger than that calculated by Equation 
23. Therefore, the calculated value, 4e, gives the 
lower limit of the critical strain rate for wedge- 
type cracking. It is also known from Equation 23 
that C[37(1 --p)L/'ir],lb2] I/2 is the minimum value 
of 4 e at t e = 

5. Critical creep rate for initiation of 
wedge-type cracking and life prediction 

We consider that the pure grain-boundary sliding 
occurs in the inclusion Do with thickness b, while 
most of the creep deformation occurs within the 
grain. It is assumed in the calculation that the 
shear strain rate on the grain boundary, 4g, is given 
by the following equation, although the experi- 
mental result is not generally obtained on the 
amount of the pure grain-boundary sliding: 

D 3  
eg - b 2 XKes (24) 

where 4s is the steady-state creep rate and X is the 
ratio of the shear strain rate on the grain boundary 
to the total creep rate. K is a direction coefficient, 
sin gcos~,  where ~ is the angle between sliding 
direction and tensile axis, and is 70.5 ~ in this case. 
It is also assumed that X is almost the same as the 
ratio of the grain-boundary strain to the total 
creep strain and is in the range from 0.02 to 0.1 
under the usual creep stresses in stainless steels 
[15]. For dg = ee, the critical creep rate for the 
initiation of wedge-type cracking is given by 

2b 
~s > 4se - ~e (25)  

3DXK 

The value of dse calculated by Equation 25 gives 
the lower limit of creep rate for crack initiation in 
connection with Equation 23. 

Fig. 5 shows an example of wedge-type crack- 
ing observed in an austenitic 21Cr-4Ni-9Mn steel 
[5, 6]. Fig. 6 shows the result of calculation by 
Equation 25 in comparison with that of creep 
rupture test on austenite steels. In this calculation, 
the wedge-type cracking is assumed to occur at 
80% of the rupture life. It was considered in those 
steels that the grain-boundary diffusion of atoms 
controls the recovery process, because Equation 

Figure 5 Typical wedge-type crack on grain-boundary in 
austenitic 21Cr-4Ni-gMn steel (oA=I96MPa, T= 
973 K). 

13 is satisfied in this case. b is 2.55 x 10-1~ for 
austenite steels and 27 is ( 2 % -  7GB), where % 
(1.95 J m  -2) and 7GB (0-70Jm -2) are the surface 
energy and the grain-boundary energy of 7-Fe 
[16], respectively. The other numerical values of 
physica ! constants used in the calculation are 
DGB = 3.24 X 10-13m2sec-1 (973K) [10], fZ = 
7.101 x 10-Sm3mo1-1 [5], / l =  5.586 x 104MPa 
[17] and ~ = 0.29 [17]. A good agreement was 
found between the calculated steady-state creep 
rate and the experimental value m those steels, in 
spite of the rough estimation of the amount of 
grain-boundary sliding in the calculation. It is con- 
sidered from this figure that the wedge-type crack- 
ing cannot be observed below a certain critical 
creep rate. Fig. 7 shows the effect of grain size on 
the critical creep rate for wedge-type cracking at 
80% of the rupture life and the steady-state creep 
rate in an austenitic heat-resisting steel. For sim- 
plicity, the calculation was made only on the 
recovery by volume diffusion of atoms. It is found 
that the wedge-type crack is apt to be formed in 
the steel with the larger grain size under the same 
creep condition. Both the wedge-type crack and 
the round-type cavity can be sometimes observed 
in the same specimen, because there is a variation 
in the amount of grain-boundary sliding. 

The rupture life can be predicted by Equations 
23 and 25, when most of it is spent for the initia- 
tion of the wedge-type cracking [6]. Putting 
K = sin 70.5 ~ cos 70.5 ~ = 2(2)1/2/9, the rupture 
l i f e ,  t e ,  is expressed by the following equation: 

1 / 1 t~ = - - ~ l n  l - T [  G ~ -  ] (26) 
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Figure 6 Critical creep rate for 
wedge-type cracking, dsc, and 
steady-state creep rate, ds, in 
austenite steels. 

Fig. 8 shows the rupture life estimated by Equa- 
tion 26 and that of the experiment in austenite 
steels in the creep range where wedge-type crack- 
ing occurs [6, 19]. Most of the data points lie 
between two calculated values for X in 21Cr -4Ni -  
9Mn steel, while the calculated rupture life is 
somewhat shorter than the experimental life 
under stresses at 873 K in SUS304 steel. This may 
be due to the effect of the other recovery process 
such as plastic accommodation in the adjacent 
grains, or to the fact that the wedge-type cracking 
in SUS304 steel can occur in the relatively early 
stage of creep at low stress level [18]. 

The continuum mechanics model used in this 
study can be also applicable to the understanding 
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of crack initiation when the strain rate changes 
periodically or with time in fatigue. The study is 
now in progress. 

6. Conclusion 
A theoretical discussion was made on the initiation 
of the intergranular wedge-type crack in creep, 
using a continuum mechanics model which incor- 
porated the recovery effect by diffusion of atoms. 
A good agreement was found between the result of 
calculation based on this model and that of 
experiment in austenite steels. It was considered 
that there is a critical creep rate for wedge-type 
cracking. The result of calculation gives the lower 
limit of a critical creep rate for crack initiation, 
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Figure 8 Predicted rupture 
life, te, and experimental life, 
tr, in austenite steels. 
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because the ef fec t  o f  the o ther  recovery processes 

such as plastic relaxat ion is n o t  taken into  account  

in this model .  The mode l  was also applied to the 

predic t ion o f  the rupture  life in creep where the 

wedge- type cracking occurred.  
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